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OBSERVATIONS OF GAMMA-RAY BURSTS OF COSMIC ORIGIN

Ray W. KrEBEsADEL, IaN B. StrONG, AND Roy A. OrsoN

University of California, Los Alamos Scientific Laboratory, Los Alamos, New Mexico
Reccived 1973 March 16; revised 1973 April 2

ABSTRACT

Sixteen short bursts of photons in the energy range 0.2-1.5 MeV have been observed between
1969 July and 1972 July using widely separated spacecraft. Burst durations ranged from less than
0.1 s to ~30 s, and time-integrated flux densities from ~10~-% ergs em—2 to ~2 X 10—% ergs

cm—2 in the energy range given. Significant time structure within burste was observed. Directional
information eliminates the Earth and Sun as sources.

Subject headings: gamma rays — X-rays — variable stars

I. INTRODUCTION

On several occasions in the past we have searched the records of data from early
Vela spacecraft for indications of gamma-ray fluxes near the times of appearance of
supernovae. These searches proved uniformly fruitless. Specific predictions of gamma-
ray emission during the initial stages of the development of supernovae have since
been made by Colgate (1968). Also, more recent Vela spacecraft are equipped with
much improved instrumentation. T his encouraged a more general search, not re-
stricted to specific time periods. The search covered data acquired with almost con-
tinuous coverage between 1969 July and 1972 July, vielding records of 16 gamma-ray

bursts distributed throughout that period. Search criteria and some characteristics of
the bursts are given below.

II. INSTRUMENTATION

The observations were made by detectors on the four Vela spacecraft, Vela 54,
5B, 64, and 6B, which are arranged almost equally spaced in a circular orbit with
a geocentrnc radlus of ~1.2 % 10* km.

On each spacecraft six 10 cm® Csl scintillation counters are so distributed as to
achieve a nearly isotropic sensitivity, Individual detectors respond to energy deposi-
tions of 0.2-1.0 MeV for Vela 5 spacecraft and 0.3-1.5 MeV for Vela 6 spacecraft,
with a detection efficiency ranging between 17 and 50 percent. The scintillators are
shielded against direct penetration by electrons below ~0.75 MeV and protons
below ~20 MeV. A high-Z shield attenuates photons with energy below that of the
counting threshold No active anticoincidence shielding is prowded

.
T N AL n  mmccos s ot s



Discovery & Demographics

High-energy Era

160 —

140
120
100

60

40
20

1000

E peak [keV]

100

“short” i

‘Glong’7

BATSE

"0

50 100 150

N

*|sotropic

* Non-Euclidean/
Inhomogeneous®,

 Two Populations

-180

1000 ™~ N

Number of bursts

-135 -90

—
<
T 7T

Cmax/ Cmin

41000

— 100

To

Bursts yr-1 {full sky)



Discovery & Demographics
High-energy Era

“No Host Problem”

“Great Debate” here in DC (Apr 95):
Galactic or Cosmological?

Rees, Paczynski, Lamb
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THE CORRECTED LOG N-LOG
FLUENCE DISTRIBUTION OF
COSMOLOGICAL v-RAY BURSTS

Joshua S. Bloom!?, Edward E. Fenimore?, Jean in ’t Zand?*

! Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138
2Los Alamos National Laboratory, Los Alamos, NM 87544
° Goddard Space Flight Center, Greenbelt, MD 20771

Recent analysis of relativistically expanding shells of cosmological
~-ray bursts has shown that if the bursts are cosmological, then most
likely total energy (FEo) is standard and not peak luminosity (Lo).
Assuming a flat Friedmann cosmology (go = 1/2, A = 0} and constant
rate density (po) of bursting sources, we fit a standard candle energy to
a uniformly selected log N-log S in the BATSE 3B catalog correcting
for fluence efficiency and averaging over 48 observed spectral shapes.
We find the data consistent with Ep = 7.3%0'7 x 10°! ergs and discuss
implications of this energy for cosmological models of v-ray bursts.

INTRODUCTION

On the basis of strong threshold effects of detectors, Klebesadel, Fenimore,
and Laros (7) concluded that GRB fluence tests were largely inconclusive.
As a result, nearly all subsequent number-brightness tests have used peak
flux (P) rather than fluence (S). However, the standard candle peak lu-
minosity assumption that is required by log N-log P studies is unphysical.
If, for instance, bursts originate at cosmological distances and are produced
by colliding neutron stars then one might expect that total energy would be
standard and not peak luminosity. Moreover, recent analysis of relativistically

expanding shell models has cast doubt on the standard Ly assumption (9).
In thic naner we cook to eliminate the larce threshold effects present in
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(the dimmest bursts
tl+2z2>64 glven this Fo, would seem to rule out several cosmological models

CONCLUSIONS

Our fit of Eg = T. 0"’ x 10°! [30-2000 keV] ergs seems a plausible number

on the basis that GRBs last on the average 10 sec and Lo = 4.6 x 10°° erg
s~1 from log N-log P studies (2). However, this Ep implies a rather large
efﬁciency of energy conversion to y-rays {~ 10%) if the bursting mechanism
is colliding neutron stars (Miotal =~ 2. 8M). Nevertheless, this result would
seem to help resolve the “no—host” problem (cf. ref (3)). Interestmgly, that

WS =~ 5x10~% erg cm™~2) are required to be at a redshift of

hat require GRB progenitors to be within galaxies (although see reference
(8)). This surprisingly high redshift is due to the correct blueshifting of the
baseline spectra back to the source in eq. (1). If we neglect this factor, we
obtain a smaller, more tenable redshift of the dimmest bursts (1 + z = 5.2).

https://apod.nasa.gov/debate/debate95.html
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Afterglow predictions:
Paczynski & Rhoads 93, Katz 94,
Meszaros & Rees 97
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gASIS: A GRB Mission Concep
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We are studying a gamma-ray burst mission concept called the Burst
ArcSecond Imaging and Spectroscopy (BASIS) as part of NASA’s New
Mission Concepts for Astrophysics program. The scientific objectives
are to accurately locate bursts, determine their distance scale, and
measure the physical characteristics of the emission region. Arcsecond
burst positions (angular resolution ~30 arcsec, source positions ~3 arc-
sec for >10™° erg/cm? bursts) would be obtained for ~100 bursts per
year using the 10-200 keV emission. This would allow the first deep,
unconfused counterpart searches at other wavelengths. The key tech-
nological breakthrough that makes such measurements possible is the
dt?velopment of CdZnTe room-temperature semiconductor detectors
with fine (~100 micron) spatial resolution. Fine spectroscopy would
be obtained between 0.2 and 200 keV. The 0.2 keV threshold would
allow the first measurements of absorption in our Galaxy and possible

Song!
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Afterglows

GRB 970228

X-ray afterglow discovery
Optical afterglow discovery

Costa+97, van Paradijs+97

GRB 970508

Radio afterglow discovery
Absorption redshift
Host galaxy

Frail+97, Metzger+97, Taylor+97...
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Afterglows

Relativistic external shock model for Afterglows
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Afterglows

Paradigmatic Model
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Collimation

Theory: Rhoads 97
Early Events:

*GRB 971214 Kulkarni+98
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An infrared flash contemporaneous
with the ~-rays of GRB 041219a

C. H. Blake', J. S. Bloom'~, D. L. Starr’’, E. E. Falco’, M. Skrutskie’,
E. E. Fenimore’, G. Duchéne'”, A. Szentgyorgyi’, S. Hornstein'’

J. X. Prochaska®, C. McCabe'’, A. Ghez'’, Q. Konopacky'’,

K. Stapelfeldt'’, K. Hurley’, R. Campbell®, M. Kassis®, F. Chaffee®,
N. Gehrels®, S. Barthelmy?®, J. R. Cummings®, D. Hullmger8 14

H. A. Krimm®">, C. B. Markwardt®>'*, D. Palmer’, A. Parsons®,

K. McLean’ & J. Tueller®
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Swift (15-350 keV)
- 3rd Swift localized event

- 1st long-wavelength afterglow detected for Swlft

ounts per 64 ms

- “Forward shock” flashes (eg., GRB990123 Akeﬂof+009 & {'.;‘:'_ | )
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Re: IR instrumentation project

Neil Gehrels to Joshua,

@

Hi Josh,

Nat ¢

|

O n

10/12/08

This looks excellent and exactly what is need for GRB progress. You
can say that you have identified $50k to begin support without being
specific. | may use some non-Swift hardware development funds for
that support. | don't want to advertise such support too broadly
because, then, everyone will be knocking at the door. On the other
hand, it is not a secret and we should give straight answers when

anyone asks directly.

B

Collaboration: Butler, N.,
Fox, 0., Prochaska, J. X.,
Littlejohns, 0., Ramirez-Ruiz,
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Klein, C., Toy,

Watson,
Bloom, J.,
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Progenitors OFFSET DISTRIBUTION OF GAMMA-RAY BURSTS

1.0 -
0.8+
Long-soft GRBs (LSB) from massive stars  LSB Locations
(“collapsars”) _
Model: MacFayden & Woosley 99 = 0.6-
VI i
»LSB locations correlated with the light of star o T
forming galaxies ‘ * ‘
0.4 — Z n
0.2+ e -
0.0 ] vl el

1.0 10.0 100.0 1000.0
R {kpc) projected



Progenitors
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Compact Binary Orbit Around a Massive Elliptical
i 2 ] GRB 050509b

" Nuii;?:ql;lr:j GrCRlém ’ NC‘.JI"Oﬂ star binary formed during starburst F i rSt Wel I -LOcal ized
around 4000 lightyears from galaxy center
Short-Hard GRB by
Swift (BAT/XRT)

Video from AAS
press release (May
31, 20095)

We have argued that the observations find natural explanation
with a compact merger system progenitor. If so, then short-hard
GRBs provide a bridge from electromagnetic to gravitational
wave astronomy: indeed, had GRB 050509b occurred a factor
| M of ~3 closer in luminosity distance, 1t might have produced a
Kick causes binary to orbit : : : :
E R dctcctable chirp signal with the next-generation Laser Inter-
for a few billion yeags e 26
R (erometer Gravitational-Wave Observatory (LIGO II).
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A short y-ray burst apparently associated with an
elliptical galaxy at redshift z = 0.225

N. Gehrels', C. L. Sarazin? P. T. O'Brien’, B. Zhang®, L. Barbier', S. D. Barthelmy', A. Blustin’, D. N. Burrows®,

J. Cannizzo"’, J. R. Cummings"®, M. Goad®, S. T. Holland"®, C. P. Hurkett’, J. A. Kennea®, A. Levan’,

C. B. Markwardt"'°, K. O. Mason®, P. Meszaros®, M. Page®, D. M. Palmer'!, E. Rol’, T. Sakamoto?, R. Willingale’,
L. Angelini®’, A. Beardmore’, P. T. Boyd"’, A. Breeveld’, S. Campana'?, M. M. Chester®, G. Chincarini'>"?,

L. R. Cominsky'*, G. Cusumano'’, M. de Pasquale’, E. E. Fenimore'!, P. Giommi'®, C. Gronwall®, D. Grupe®,

J. E. Hill°, D. Hinshaw"'’, J. Hjorth'®, D. Hullinger"'’, K. C. Hurley'’, S. Klose®’, S. Kobayashi®, C. Kouveliotou*',
H. A. Krimm"®, V. Mangano'?, F. E. Marshall', K. McGowan”, A. Moretti'?, R. F. Mushotzky', K. Nakazawa®?,

J. P. Norris', J. A. Nousek®, J. P. Osborne’, K. Page®, A. M. Parsons', S. Patel*’, M. Perri'®, T. Poole’, P. Romano'?,
P. W. A. Roming®, S. Rosen’, G. Sato??, P. Schady’, A. P. Smale**, J. Sollerman®>, R. Starling*®, M. Still*?,

M. Suzuki®’, G. Tagliaferri'?, T. Takahashi*?, M. Tashiro?’, J. Tueller', A. A. Wells’, N. E. White'

&R. A. M. J. Wijers*®

Gamma-ray bursts (GRBs) come in two classes': long (>2s), soft-
spectrum bursts and short, hard events. Most progress has been
made on understanding the long GRBs, which are typically
observed at high redshift (z~ 1) and found in subluminous
star-forming host galaxies. They are likely to be produced in
core-collapse explosions of massive stars’. In contrast, no short
GRB had been accurately (<10”) and rapidly (minutes) located.
Here we report the detection of the X-ray afterglow from—and the
localization of —the short burst GRB 050509B. Its position on the
sky is near a luminous, non-star-forming elliptical galaxy at a
redshift of 0.225, which is the location one would expect™ if the
origin of this GRB is through the merger of neutron-star or black-
hole binaries. The X-ray afterglow was weak and faded below the
detection limit within a few hours; no optical afterglow was
detected to stringent limits, explaining the past difficulty in
localizing short GRBs.

The new observations are from the Swift’ satellite, which features

1 ~7r 1 ~ 1 1 — . 1 /T~ A Frm\

GRB survey made with the Burst and Transient Source Experiment
(BATSE). The 15-150keV fluence is (9.5 * 2.5) X 10~ ° erg cm 2,
which is the lowest imaged by BAT so far and is just below the short
GRB fluence range detected by BATSE (adjusted for the different
energy ranges of the two instruments).

Swift slewed promptly and XRT started acquiring data 62 s after
the burst (T+62s, where T is the BAT trigger time). Ground-
processed data revealed an uncatalogued X-ray source near the centre
of the BAT error circle containing 11 photons (5.7¢ significance due
to near-zero background in image) in the first 1,640 s of integration
time. The XRT position is shown with respect to the Digitized Sky
Survey (DSS) field in Fig. 1. A Chandra target-of-opportunity
observation of the XRT error circle was performed on 11 May at
4:00 Ut for 50 ks, with no sources detected in the XRT error circle.
The light curve combining BAT, XRT and Chandra data are shown in
Fig. 3. The UVOT observed the field starting at T+60s. No new
optical/ultraviolet sources were found in the XRT error circle to
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Progenitors

Early indications that SHBs were from a different population
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But the above statement can be reworked in the form of a generic set of predictions:

« In Long delay (>1 Gyr) progenitors scenarios with kicks the offsets should anti-
correlate with host mass and correlate with average stellar age

« In Short delay (< 1 Gyr) progenitors the offsets should correlate with host mass
and anti-correlate with average stellar age.

It the progenitor lifetime of the SHBs 1s long and kicks are small, then the bursts should
correspond spatially to the oldest stellar populations 1n a given galaxies. For early-type
galaxies, the distribution would presumably follow the light of the galaxy. In contrast,

the distribution 1n star-forming galaxies might be more concentrated in the spheroid
(e.g., bulge of the Milky Way).
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Oddballs,
or Nature is good at Making Bursts of Gamma rays

X-ray Flashes (XRFs)
Lower-energy events

Soft-gamma Ray
Repeaters (SGRS) -

March 5 Events
~15 known

Relativistically Beamed
Tidal Disruption Events -

Sw 1644+57

Long GRBs without
Supernovae




GRBs as Probes

*ISM/IGM/Host via Absorption Spectroscopy
Chen+095, Savaglio+07, Prochaska+07

* Reionization (Neutral Fraction vs Redshift)

Miralda-Escudé 98, Bromm & Loeb 02,
Kawai+05, Totani+06

*Signposts to Pop lll stars in the early

universe
Bromm+00
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GRBs as Probes

*ISM/IGM/Host via Absorption Spectroscopy
Chen+05, Savaglio+07, Prochaska+07/

* Reionization (Neutral Fraction vs Redshift)

Miralda-Escudé 98, Bromm & Loeb 02,
Kawai+05, Totani+06

*Signposts to Pop lll stars in the early

universe
Bromm+00
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For Swift:
<7% of bursts from z>7
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All Swift redshifts

—
\ o
- D. Perley 09 ST b e

—




GRBs as Probes Killer AppS

* Testing compactness w/
Fermi

e.e. 090510 (I' > 1200)
Abdo+09

* Testing curvature effect
(“high latitude emission”)
in rapid fall

e.g. 080503 Genet+09

Willingale+09

* Testing Lorentz
Invariance Violation

e.g. 090510 N1 ToO: call Neil®
(Ferma)

* Connection to Gravity
Wave/Neutrino Domains

Screenshot From My Talk at “Swift 5th Birthday” Meeting (18 Nov 2009)



Multimessenger

short GRB 080503 I O § Vv

s I Neil Gehrels to Fynbo, Berger, Tanvir, Kawai, Fox, Bloom, ... ¢ 5/3/08

short GRB (<0.25 sec)
bright fading XRT

no UVOT

7.6 hours from the sun

GRB 080503

Perley, Metzger+08; Also, GRB 130603B, Tanvir+03
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Multimessenger

short GRB 080503 I O n§ v

ﬁ I Neil Gehrels to Fynbo, Berger, Tanvir, Kawai, Fox, Bloom, ... ¢ 5/3/08

short GRB (<0.25 sec)
bright fading XRT

no UVOT

7.6 hours from the sun

GRB 080503

Perley, Metzger+08; Also, GRB 130603B, Tanvir+03

25

26

Magnitude (AB)

28

{ { -+« High—z model

= v 1 v Y Y I

03

Low-z model

o
Flux (pJy)

0.03

2 4 6 8 10
t (days)

F1Gg. 11.— Two AB magnitude (Qkel 1974) light-curve models for
a Ni-powered “mini-SN” from GRB 080503, based on the model

of [Li & Paczyniski (1998), [Kulkarni (2005), and [Metzger et all
(2008b). The solid line indicates a model at z = 0.03 with a "9Ni
mass &~ 2 X 1072 M, total ejecta mass =~ 0.4 M, and outflow ve-
locity & 0.1¢. The dotted line is for a pure Ni explosion at z = 0.5
with mass &= 0.3 M. and velocity &~ 0.2¢. Also shown are our
r-band and F606W detections and upper limits from Gemini and

HST




Lightcurve from Fermi/GBM (10 — 50 keV)

Multimessenger
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Energetics // A Schematic

optical (Supernova) X, Radio

E Internal Shock E 2

melic

External Shock
panchromatic

Ev, GW >ESN (F<2) ZEMZ(F 7 2) r>vE))
()

Woosley & Bloom (ARAA) 06
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50 Years of Gamma-Ray Bursts”

* With a biased overemphasis on Neil & stuff | was involved In

Josh Bloom
UC Berkeley

@profjsb



